Environmental Biotechnology: Challenges and Opportunities for Chemical Engineers
نویسندگان
چکیده
Over the past few decades enormous quantities of industrial pollutants have been released into the environment. A large number of them, particularly those structurally related to natural compounds, are readily degraded or removed by microorganisms found in soil and water. However, superimposed on the wide variety of pollutants present in the environment is an increasing number of novel industrial compounds rarely found in nature. These xenobiotic compounds are usually removed slowly and tend to accumulate in the environment (Figure 1). Due to the high degree of toxicity, their accumulation can cause severe environmental problems. Because of the problems associated with pollutant treatment by conventional methods, such as incineration or landfills, increasing consideration has been placed on the development of alternative, economical and reliable biological treatments. Although natural microorganisms collectively exhibit remarkable evolutionary capabilities to adapt to a wide range of chemicals, natural evolution occurs at a relatively slow rate, particularly when the acquisition of multiple catalytic activities is necessary (Figure 2). In these cases, the acceleration of these events via genetic engineering/processing engineering is helpful since the desirable traits can be carefully designed and controlled. The drive toward this goal represents the essence of environmental biotechnology.
منابع مشابه
Challenges and opportunities in synthetic biology for chemical engineers.
Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obst...
متن کاملIndustrial applications of enzyme biocatalysis: Current status and future aspects.
Enzymes are the most proficient catalysts, offering much more competitive processes compared to chemical catalysts. The number of industrial applications for enzymes has exploded in recent years, mainly owing to advances in protein engineering technology and environmental and economic necessities. Herein, we review recent progress in enzyme biocatalysis, and discuss the trends and strategies th...
متن کاملNew challenges and opportunities for industrial biotechnology
Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However,...
متن کاملInduced Pluripotent Stem Cells: Challenges and Opportunities
Regenerative capacity of mammals is limited and can rarely regenerate a specific organ or tissue fully. Due to these limitations, regenerative medicine seeks efficient and safe cell sources for regeneration of damaged tissues and organs or treatment for incurable diseases. Human embryonic stem cells (HESCs) hold two important properties called self renewal and pluripotency. However, the use of ...
متن کاملTerahertz wave imaging: horizons and hurdles.
Terahertz (THz) science will profoundly impact biotechnology. It has tremendous potential for applications in imaging, medical diagnosis, health monitoring, environmental control and chemical and biological identification. THz research will become one of the most promising research areas in the 21st century for transformational advances in imaging, as well as in other interdisciplinary fields. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005